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Optimal Guidance and Nonlinear Estimation for
Interception of Accelerating Targets

Michael E. Hough*
Textron Defense Systems, Wilmington, Massachusetts 01887

Optimal guidance and nonlinear estimation algorithms are formulated for interception of an accelerating target
vehicle during boost. For an interceptor with two-axis control of translational acceleration, time to go may be
selected to null the component of commanded acceleration along the uncontrolled axis. A nine-state, extended
Kalman filter is formulated, in a Cartesian-inertial frame. The filter dynamics model includes a vector-differential
equation for the thrust acceleration vector of the target during a gravity-turn maneuver. With angle measurements
from a strapdown seeker, very small miss distances can be achieved, despite large estimation errors in range,
because of the time-to-go algorithm. Monte Carlo simulations are used to generate theoretical collision probabilities
as functions of sensor measurement accuracy and filter update rate.

I. Introduction

DVANCED guidance and estimation algorithms will be needed

in future systems for ballistic missile defense.! Using a respon-
sive propulsion system for translation control, a small kinetic-kill
vehicle must be accurately guided to achieve collision with an accel-
erating or a decelerating target. Estimates of the target state vector
will be generated by processing strapdown-inertial measurements
and strapdown seeker measurements of the line-of-sight (LOS) an-
gle to the target.

According to the certainty equivalence principle,? the translation
control (or guidance) algorithm and estimation algorithm may be
formulated independently. For a deterministic linear system and
quadratic performance index, the optimal control is a linear function
of the state variables. For a stochastic linear system with process and
measurements containing white noise, the optimal control is a linear
function of the maximum-likelihood estimates of the state variables.

The optimal deterministic control minimizes a weighted sum of
miss distance and integral-square acceleration. Although engage-
ment final time 7 is generally a free parameter, T may be specified
by including it in the cost function.>* A simplified form of opti-
mal control, or proportional guidance, has been implemented for
interception of nonmaneuvering targets®® and maneuvering targets
with constant acceleration.”#

Techniques for nonlinear estimation include minimum-vari-
ance estimation, statistical linearization, and batch least-squares
estimation.”!? The simplest implementation of minimum-variance
estimation is the extended Kalman filter (EKF). The EKF has
been applied extensively to interception problems.!'~1* An im-
portant concern is EKF stability when target dynamics are not
modeled accurately, and an adaptive filtering approach is often
suggested. 1313

Performance can be improved when the control and estimation
processes are coupled (rather than separated). For example, when
the performance index includes a measure of estimation accuracy,
the optimal control modifies the convergent intercept trajectory to
enhance observability of range errors,'>? which are otherwise un-
observable as LOS rate approaches zero. Alternatively, the optimal
control may be constrained by the uncertainty of the estimate,?! to
SUppress unnecessary maneuvers.

In this article, new algorithms for optimal guidance and nonlinear
estimation are shown to be effective for interception of an acceler-
ating target vehicle during boost phase. Special emphasis is given to
the implementation of a new optimal guidance algorithmin a vehicle
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with two-axis control of translational acceleration (Sec. IT). The time
to go is selected to null the component of commanded acceleration
along the uncontrolled axis. This technique shifts the collision point
in a lateral direction along the target trajectory, thereby increasing
the effectiveness of the control and estimation processes.

A new contribution is a simplified, but accurate, nonlinear EKF
model that correlates the translational dynamics of the thrusting tar-
get with its attitude motion (Sec. III). The thrust acceleration vector
of the target is described by a single vector-differential equation that
accounts for mass loss and angular dynamics. During a gravity-turn
maneuver, target angular velocity is expressed by a vector function
of target position and velocity.

A nine-state EKF is formulated in a Cartesian-inertial frame
(Sec. 1V). The states are the components of the relative-position
vector, relative-velocity vector, and inertial acceleration vector of the
thrusting target. Both the EKF dynamics and measurement models
are nonlinear functions of the state variables. LOS angle measure-
ments from a strapdown seeker are modeled by the spherical angles
of the LOS vector. Bias and random errors in the inertial measure-
ments and bias errors in the seeker measurements are not considered
in this evaluation.

Statistical properties of the EKF are evaluated by Monte Carlo
simulation of the nonlinear truth model (Sec. V). The latter includes
realistic models for vehicle aerodynamics, mass properties, thrust
control, attitude control, and controls actuation. It is shown that very
small miss distances may be achieved with angle measurements,
despite large estimation errors in range, because of the time-to-go
algorithm (Sec. VI).

Simulation results determine collision probability, or the fraction
of trials for which the separation distance between vehicle mass
centers does not exceed a specified value. Collision probabilities
are tabulated as functions of LOS measurement accuracy and EKF
update rate (Sec. VII).

II. Optimal Guidance Algorithm

Two dynamic systems with six degrees of freedom describe
the coupled translational and rotational motions of an interceptor
(the pursuer) and an accelerating target vehicle (the evader). Spe-
cial emphasis is given to the implementation of an optimal guid-
ance algorithm for a pursuer with two-axis control of translational
acceleration.

The pursuer is actively controlled using separate propulsive sys-
tems for translation control and attitude control. Translation control
forces are generated in body yz axes, orthogonal to the longitudinal
x axis. These forces cause the velocity vector to rotate away from
the longitudinal axis, inducing angle of attack and lift acceleration
in the opposite direction. To reduce the parasitic lift acceleration and
aerodynamic disturbance torques, attitude control forces are com-
manded in body yz axes to stabilize the vehicle near zero angle of



960 HOUGH

attack. Two advantages of this control strategy include 1) reduced
fuel for translation control and attitude control and 2) reduced aero-
optic distortion of the measured LOS.

The evader is actively controlled using a single propulsive sys-
tem for translation and attitude control. Axial components of the
thrust force accelerate the evader to the velocity required for orbital
insertion. By gimballing the exhaust nozzle(s), force components
may be generated in two directions perpendicular to the longitudi-
nal axis. These yz thrust components stabilize the vehicle near zero
angle of attack to minimize aerodynamic loads and aerodynamic
torques on the unstable airframe. During the first few seconds af-
ter liftoff, when dynamic pressure is small, large angles of attack
are generated as the evader pitches in a downrange direction. As
dynamic pressure increases later in the flight, the evader performs
a gravity-turn maneuver in which the thrust vector turns (slowly)
with the velocity vector and the angle of attack remains small.
Other lateral maneuvers and staging events may occur much later in
the flight.

Translational motions of each vehicle may be described by two
dynamic systems with three degrees of freedom:

1 1
Vp = apc +ap +8p, rp=Vp @

N S @
where all vectors are resolved in an inertial frame, unless otherwise
indicated. The superscript I (on the vectors) indicates a time deriva-
tive with respect to an inertial frame. Subscripts identify the pursuer
and evader positions r,, r,, inertial velocities v ,, v, gravitational ac-
celerations g,, g., aerodynamic (lift and drag) accelerations a,, a.,
and control accelerations a,., a... Control accelerations arise from
forces for translation control and attitude control.

The equations of motion (1) and (2) may be expressed in relative-
motion coordinates. Position and velocity vectors of the evader rel-
ative to the pursuer are defined by

r=r,—r

' u=v,—v,

By subtracting Eq. (2) from Eq. (1), it follows that

N~

I
U=a;—ap, =u (3a)

a=a.+g —g,+a.—a, (3b)

All accelerations except the pursuer control @, are included in a
disturbance acceleration a,. As the evader’s control a,. is not opti-
mized, it is treated as a disturbance acceleration.

For the pursuer, an optimal guidance algorithm?? generates ac-
celeration commands for translation control;

3
,(0) = 5 r(@) + u(7) + 0 (@) = p(®)]

t=T-1, n(r)=/ a,(s) ds, p(r)=/ n(s) ds
1] 0

where 1 is time to go. The quantity in brackets is the zero-effort
miss. This quantity depends on the future history of a; from the
present time ¢ to the engagement final time T'. For sufficiently small
values of 7, the quadratures may be approximated by

n(7) = tay(r) + 0%, p(@) = 37%a,(0) + O(?)

After simplification, the optimal command may be expressed by
3
a;L_(r) = ?[r(r) + tu(r) + %tzad(r)] 4)

Effectively, the zero-effort miss is computed as if a; were a con-
stant vector. This approximation is adequate when a},. is updated
frequently during an engagement. For a; = 0, it may be shown that
Eg. (4) is equivalent to proportional guidance.

The command vector (4) may be implemented in a propulsive
divert system with three control axes. When forces can be generated

in three directions, the pursuer can steer to any point along the
evader trajectory. For example, time of flight may be controlled by
modulating in-track forces.

For a two-axis control system, a different approach is necessary
because in-track forces cannot be generated. For example, the pur-
suer must steer to a point, along the evader trajectory, where correc-
tions to the natural flight time are not required. Natural flight time
depends on the fluctuating velocities and accelerations of both ve-
hicles as well as pursuer control forces that modify the engagement
geometry.

The command vector (4) may be implemented in a two-axis con-
trol system when 7 is selected to null the component of Eq. (4) along
the uncontrolled axis. To illustrate this process, the zero-effort miss
is computed in the inertial frame and transformed to the body frame.
When propulsive control is available in body yz axes, T may be cho-
sen to null the miss component along the uncontrolled axis:

ET)=¢+ 7€+ 1ar =0
where £, £, d, are the components of , u, @, along the body x axis.

As there are two real roots, the choice depends on the algebraic sign
ofa 1-

@G>0, £<0&>0 (5a)

d <0, £<0,&>0 (5b)

Following substitution of Eq. (5) in Eq. (4), it may be shown that
the component of a;,. along the body x axis is zero.

In the actual implementation, the acceleration command (4) in
inertial axes is transformed into a force command in pursuer body
axes;

F,.=R,F,

* *
pc? ch = mP(t)apc

where m , (¢) is the variable mass of the pursuer and R, is the rota-
tion matrix from inertial axes to body axes. The body x command is
zero, whereas the other two nonzero commands are assigned to four
yz divert thrusters. Each control axis requires two nozzles to imple-
ment positive and negative force commands. When a force command
passes through zero, thrust decays to zero in one nozzle whereas
thrust rises to its commanded value in the opposite nozzle. Com-
mands in each nozzle are saturation limited, and force actuation
processes are described by a first-order lag models.

II1. Filter Dynamics Model

A simplified dynamics model of the engagement is formulated
for implementation in a Kalman filter. The filter dynamics model is
based on the equations of relative motion (3):

T 1
u=ge~gp+aec+ae_(apc'+ap)s r=1u

where all vectors are resolved in the inertial frame. The vector sum
a,. + a, may be determined from outputs of the pursuer inertial
navigation system (INS). The remaining terms are specified by dy-
namic models as follows.

For close encounters, the evader gravitational acceleration may
be expanded in a series about the pursuer gravitational acceleration:

_is
or,’

_ _He

g = gp+T,r+hot, r, P = r—3r,,
p

where g is Earth’s gravitational parameter. The gravity-gradient
matrix ", is evaluated at r,. After higher order terms are neglected,
the equations of relative motion may be expressed by

I I
u=r,r+a,+a — @,+ap), r=u ©)
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For a thrusting evader in a turn maneuver, the evader control
vector may be described by a vector-differential equation (refer to
the Appendix):

! Qec
Ao = —0, + W, X Ape Q)
U,

The first term describes the magnitude variation of thrust acceler-
ation during steady-state operation of the thrust motor at constant
values of mass flow rate and exhaust velocity U,. The second term
describes the directional variation of the thrust vector as the evader
rotates with angular velocity w,.

Ordinarily, additional dynamic states would be required to char-
acterize w,. A simple model specifies w, during a gravity-turn ma-
neuver at zero angle of attack (refer to the Appendix):

[
we=';372'(rexue)v U =V, — Wg XTI, (8)

e e

where wg is Earth’s angular velocity vector, v, is the evader
inertial velocity vector, and r, is its geocentric position vector.
During a gravity turn, evader thrust and drag accelerations are (ap-
proximately) parailel to the evader velocity vector u,, relative to
Earth’s rotating, wind-free atmosphere. The gravitational acceler-
ation causes rotation of u, in an Earth-relative orbit plane, with
magnitude |w,| depending on the angle between r, and #,.

The model (8) correlates the translational dynamics of the evader
with its attitude motion during boost. Pitch—-yaw orientation of the
evader is implicit in the initial conditions specifying the elements
of a,.(0). Thereafter, pitch-yaw attituade may be determined from
a,.(t) using the dynamic models (7) and (8). Roll orientation (around
a,.) has no dynamic significance. With this formulation, the rotation
matrix R, from the inertial frame to the evader body frame is not
needed explicitly.

The evader acceleration model (7) and angular velocity model (8)
are minimal representations in the following sense. For example, ad-
ditional states are not needed to describe the detailed dynamics of
the valve, nozzle flow, and combustion processes. Furthermore, the
guidance and control algorithms of the evader need not be imple-
mented in the filter dynamics model.

Additional state variables would be required to describe the dy-
namics of the evader aerodynamic acceleration a.. For example,
the drag acceleration vector may be described by a linear dynam-
ics model for an unthrusted evader at zero angle of attack.?? This
approach may be generalized to the thrusted case. Further compli-
cations arise from lateral maneuvers because a, would include lift
acceleration. For this study, it will be assumed that @, = 0 because
the intercept engagement occurs at high altitudes (near 40 km).

IV. Nonlinear Estimation Algorithm

Minimum-variance estimation is implemented because of its sim-
plicity, from a computational standpoint, compared to other nonlin-
ear estimation techniques, such as statistical linearization and batch
least squares. The simplest minimum-variance estimator is the EKF.

The EKF generates estimates of the state vector x from mea-
surements z. In this implementation, nine elements of x are the
components of r, u, a.., resolved in the inertial frame:

r Uy a,
X = u ) r= T ) u= Uy s Qe = as
e r3 Us L a3

The differential equations (6) and (7) may be expressed in state
variable format:

0 0]
I
x ‘_'f(x) +a, a=| —dp.—4a, |, 0=1|0 (9)
0 0|

The nonlinear function f depends implicitly on the position and
velocity vectors of the pursuer and evader in the inertial frame. The
vectorsrp, v, (and @) may be determined from outputs of the pursuer
INS in the body frame. These outputs may be transformed from
the body frame to the inertial frame using the rotation matrix R ,,

which may also be determined from INS outputs. Evader position
and velocity may be expressed by
re=r+rp, Ve =U+V,

Pursuer INS measurements contain small bias and random errors
arising from instrument errors and mechanical misalignments, but
these effects were not included in this study.

Measurements are nonlinear functions of the true state x, cor-
rupted by additive errors with Gaussian statistical properties:

z=hx) +v, Ev} =0, EwTy =R

where R is the measurement noise covariance matrix. Measurements
from a strapdown seeker may be mathematically modeled as the
spherical angles of the LOS vector r in body axes:

af ) 1 Y3
hy = tan ! (—) h, = tan e —
Y Vi +y;
1 X1
Y2 = Rp X2
Y3 X3

Body components y; are linear combinations of the inertial compo-
nents x;. This model is a simplification because actual LOS angles
are measured in a direction from the seeker to a bright spot on or
near the target (e.g., in the exhaust plume), rather than the angles
hy, hy of r between vehicle mass centers. Furthermore, seeker mea-
surements may contain small bias errors arising from mechanical
misalignments and aero-optic distortion of the LOS. These effects
were not considered.

The EKF equations specify the state estimate x and filter covari-
ance matrix P. As measurements z; are available at discrete times
t = t;, the EKF update equations may be implemented:

%) =%() + K[z — h(x:i ()] (10a)

-1
K; = P,(-)H] (-)[H:(=)P(=)H] (=) + R;]  (10b)
Pi(+) =1 — KiHi(—-)]1P:(-) (10c)
where (—) indicates the value immediately before the update and
(+) indicates the value immediately after the update. Referring to
Egs. (10), the estimates are updated with the nonlinear measurement

function hk(x), whereas the EKF gains K; depend on the measure-
ment sensitivity matrix:

d(hy, hy)
a(xy, x2, X3, X4, X5, X, X7, X8, X9)

Hx) =

Nonzero elements of H are contained in a 2 x 3 submatrix:

d(hy, ha) _ a(hy, hy) 3(y1, ¥2, y3)
0(x1, x2,x3)  3(y1, ¥2, y3) 3(x1, X2, X3)

2 Y1
2 v
d(hy, hy) Yiz Y12
AyLynys) | ¥ s Yo
Yi2y? yy*  y?
a1, y2,
01, y2. 3) ~R,
a(x1, x3, x3)

yi2 =y} + 53,

Between successive updates, the nonlinear dynamic system (9)
may be integrated forward, from ¢ = ¢; to the next update atf =£;;:

V=y4+¥+%

A

‘;—’t‘ =f® +a@), P=F@P+PFT() (11)

where ; (+) and P;(+) are initial conditions. It is noteworthy that
process noise is not needed (for reasons to be discussed shortly).
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The solutions of these equations specify %;,1(—) and P, (—), just
prior to the update at ¢ = t;;;. When the next measurement becomes
available, these quantities are npdated using (10).

The linearized dynamics matrix may be determined by partial
differentiations of Eq. (9):

0O, I, O
of 3 I O
F = ?x- = Fp 03 13
) A. B, C.
_ 0(ay, 4z, a3) d(ay, az, a3)

G RO © 7 8wy, ua, uz)

_ 0{ay, @y, 43)
* 7 .(a1, a2, a3)
where Oj is the 3 x 3 zero matrix and /3 is the 3 x 3 identity matrix.

To clarify notation, the following vectors are resolved into inertial
components:

X, X,
r.=17Y [, v,=1| ¥,
z, Z,
Wi X,
Wee=| w2 |, r,=1%,
w3 Z,

Elements of the A,, B., C., matrices may be determined by partial
differentiations of Egs. (7) and (8) (refer to the Appendix):

r 0 az —az—
3(6!)1, wy, (U3) a(Xey Yey Ze)

A, = | —a3 0 a;
a(Xev Yey Ze) 8(7‘1, ra, 7'3)

| a2 —a 0 |
[ 0w e, ) 8(Xe, Yo, 2.)
Be= —a; 0 a; (wl,wz,w:a e Loy g

3(X,, Y., Z,) 3(uy, us, u3)

a’+ af a)a; aas "
e — w3 wy
al, al, al,
| aa a*+ a% axas
C. = +w; —= — o
aU, alU, aU,
aa; a,a; a’*+a?
—wy +w
L alU, alU, aU,
0X,, Y., 2Z,)
a=ara+a, Bl ter ) _
a(ry, 1y, 13)

XY Zo)

dur, ug, )

Referring tothe A,, B, matrices, partial derivatives of the angular ve-
locity components may be determined from Eq. (8) (refer to the Ap-
pendix). Finally, the gravity-gradient matrix may be expressed by

_(ﬁ)z_l XY, X7,
rp 3 ra rl
_3IL_® XPYP YP ’ 1 YPZP
)

X,Z, Y,Z, z,\* 1

L T 7 (_) 3

rp=X2+Y2+2Z2

V. Monte Carlo Simulation

For the EKEF, the filter covariance matrix P is the lowest order
approximation of the true state error covariance matrix because non-
linear expectations are approximated by the lowest order terms of
a series expansion about the current estimate.” As nonlinear effects
may generate non-Gaussian statistics for the output variables, P
may not accurately characterize EKF performance. Examples of
nonlinearities include saturation limits and deadbands in control
systems.

Monte Carlo simulation of the EKF and its nonlinear truth model
provide the highest confidence level for evaluation of performance
of the guidance and estimation algorithms. In the pursuit-evasion
guidance simulation, both vehicles are modeled by dynamic systems
with six degrees of freedom. Aerodynamic forces and moments are
specified using different sets of aerodynamic coefficients for each
vehicle. As both vehicles are propulsively controlled, additional
degrees of freedom model the control actuation process, propellant
depletion, and variable inertia properties.

For the evader vehicle, translational accelerations are generated
by a single thruster nominally aligned to the body x axis. As the
airframe is aerodynamically unstable, attitude control torques are
generated by gimballing the thrust nozzle in two (yz) directions,
perpendicular to the body x axis. During the engagement with the
pursuer, the evader executes a gravity-turn maneuver near zero angle
of attack, with its thrust vector approximately parallel to the Earth-
relative velocity vector.

For the pursuer vehicle, translational accelerations are generated
by four independently controlled thrusters in the vehicle yz plane,
located near the pursuer mass center. Thrust commands are gen-
erated from the optimal control (4). Attitude control torques are
generated by six independently controlled thrusters in the vehicle
base plane. Thrust commands are generated by an autopilot algo-
rithm that stabilizes the vehicle near zero angle of attack. All thrust
commands are saturation limited, and the actuation processes are
modeled by first-order lags with time constant 5 ms.

The optimal control (4) is evaluated using EKF estimates F, i, a..
resolved in the inertial frame:

e a;=a,+¥,r—a,

By, = [P+ 20+ 197,
The aerodynamic acceleration @, may be determined from INS mea-
surements as follows. As the pursuer is stabilized near zero angle of
attack, the sensed acceleration along the body x axis is the aerody-
namic drag. A single-component vector may be defined in body axes,
and this vector may be transformed from the body frame to the iner-
tial frame, thereby generating @,. Estimated time to go may be de-
termined from Eq. (5) using the body x axis components of F, &, a,:

Guidance calculations are updated until T = 15 ms, or three actua-
tion time constants before predicted intercept.

The EKF state estimates and filter covariance matrix are updated
using Eq. (10), with measurements synthesized from the determin-
istic truth model. At each EKF update, true LOS angles are cor-
rupted with randomly sampled errors whose statistical properties
are consistent with the EKF measurement model. An additional 54
variables model the differential equations (11) that propagate the
state estimate and covariance matrix between updates.

In the Monte Carlo mode, the deterministic model is initialized
with randomly selected parameters. Initial conditions and constant
parameters are selected once, at the beginning of a trial. Initial val-
ues are specified for the state vectors of each vehicle and the EKF
statistics. All vectors are resolved in an Earth-centered inertial (ECI)
frame. EKF statistics consist of the mean and covariance matrix
of the relative-position vector, relative-velocity vector, and evader
acceleration vector. EKF statistics are consistent with the actual
statistics for each vehicle as follows.

The evader state vector is specified by the position, velocity, and
angular rate vectors and three Euler angles that define vehicle ori-
entation relative to inertial space. It is assumed that initial estimates
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Table 1 Initial standard deviations for pursuer and evader

ECI Standard deviation
Parameter state® Evader Pursuer
Inertial position X 100.0 355
component, m Y 100.0 116.6
VA 100.0 111.9
Inertial velocity X 5.0 1.71
component, m/s Y 5.0 4.08
V4 5.0 4.13

AComponents in Earth-centered inertial coordinates.

Table 2 Initial statistics for EKF

EKF
Parameter state? Mean value lo value
Relative position x] —5833 104.1
component, m X2 29051 151.8
X3 —26700 156.1
Relative velocity x4 53.4 5.37
component, m/s x5 —1949.5 6.48
X6 1446.3 6.59
Evader x7 14.75 0.115
acceleration X3 —0.38 0.097
component, m/s? X9 28.03 0.147

2Components in Earth-centered inertial coordinates.

of evader position and velocity are specified by a remote sensor at
the start of the engagement. Position and velocity errors are con-
servatively large, isotropic in all axes, and uncorrelated (refer to
Table 1). These errors are much larger than the corresponding er-
rors caused by the evader guidance system during boost. Uncor-
related position errors make the in-flight estimation process more
difficult, because range errors are unobservable with angle measure-
ments for most of the engagement. Small errors in angular rate (0.1
deg/s) and angle of attack (0.01 deg) are assumed at the start of the
engagement.

Pursuer position, velocity, attitude, and angular rate statistics are
derived by covariance analysis. An initial covariance matrix is spec-
ified at launch, reflecting the accuracies of the INS erection, align-
ment, and initialization processes during the prelaunch phase. This
covariance matrix is propagated from the launch point, along theo-
retical boost and midcourse trajectories, to the point where homing
engagement begins. INS instrument errors are modeled by zero-
mean bias states, with typical uncertainties for a strapdown-inertial
system. At endgame initiation, pursuer position and velocity uncer-
tainties are comparable to corresponding evader uncertainties (refer
to Table 1).

EKEF statistics are generated from the absolute position and ve-
locity statistics of both vehicles and the statistics of the evader
acceleration (refer to Table 2). Evader acceleration statistics are
consistent with the statistics of its position, velocity, and attitude
and nominal values of atmospheric, aerodynamics, and configura-
tional parameters. Most of the acceleration uncertainty arises from
a scale factor uncertainty on the nominal thrust acceleration of the
evader (1o value = 0.5%).

VI. Performance of Filter

When target dynamics are not well characterized, Kalman track-
ing filters diverge because target acceleration states are not com-
pletely observable with angle measurements. "' Earlier studies'*16
indicate other difficulties in determination of the plane of the boost
trajectory. These problems are aggravated for sudden or com-
plicated maneuvers, and an adaptive filtering approach is often
suggested,!3~18

In the present application, an adaptive filtering approach was not
needed, nor was process noise included. The EKF did not diverge
for the following reasons: 1) very accurate angle measurements and
high update rates, 2) self-consistent initialization of the EKF, and
3) accurate EKF dynamics model of target acceleration.

Small angular uncertainty o, and high update rate f minimize
uncertainty in estimated position in a direction normal to the LOS:
O
0 (8) 2 r (1) ——ee (t20)

JIT 1

where r(t) is the instantaneous range. Initially, it follows that
0,(0) = r(0)oy. With filtering, the effective measurement accuracy,
oray/+/1+ ft,decreases as more measurements are processed.

Self-consistent initialization of the EKF means that initial con-
ditions of the EKF are consistent with the corresponding sets of
statistics for each vehicle state vector (refer to Tables 1 and 2). For
the unobservable states, the EKF updates its estimates using its own
dynamics model and covariance predictions.

Finally, over a limited time interval (about 16 s), the EKF dynam-
ics model can track smooth variations in magnitude and direction of
the evader acceleration vector. The gravity-turn model, defined by
Eqgs. (7) and (8), correlates the translational dynamics of the thrust-
ing evader with its attitude motion. Other difficulties can arise from
aerodynamic maneuver forces and staging events, but these were not
considered. For example, evader staging events can excite transient
spikes in the EKF estimates.!* 16

These considerations expliain why actual errors in the estimates
were reasonably consistent with the predictions of EKF filter covari-
ance. With angle measurements, the EKF quickly reduces errors in
a direction perpendicular to the range vector from pursuer to evader
(refer to Fig. 1). Errors along the range direction are large and unob-
servable for most of the engagement. Immediately before intercept,
the LOS vector rotates rapidly, thereby increasing the correlation
of errors in range and LOS angle. During this interval, range errors
can be corrected with angle measurements.

Errors in the EKF estimates of range are much larger than actual
miss distances because of the time-to-go algorithm. For example,
the zero-effort miss distance and time to go are computed with the
EKF estimates:

F(T) = () + Ta() + S22,
g(t) = @, (t) —a,(t) + TH(OF ()

Miss distance is determined by errors in the EKF estimates
8%, 811, 8a,, and a compensating error §7 (because 7 is computed
with EKF estimates):

SF(T) = 87 (1) + £8i(r) + 122[8a,c(6) + T, (1) 87]
+ () + taq ()] 62 (12)

Although all components of Eq. (12) are initially large, compensat-
ing errors in 8@ and 8T combine to reduce component magnitudes
as the engagement progresses (refer to Fig. 2). In contrast, when ©
is computed with a fixed final time T (rather than T), there are no
compensating errors in the time to go:

SF(T) = 87(t) + (T — ) 8i(t) + L(T — 1)? 8k, (r) (13)
Magnitudes of Eq. (13) are two orders of magnitude larger than the
corresponding magnitudes of Eq. (12).

These interesting results may be clarified with a simple example.

In a force-free engagement, both vehicles move at constant velocities
after an impulsive correction (to the pursuer) at ¢t = 0:

§(t) = &y — (uo + Au)t,

L) = Lo — (wo + Aw)t

n(t) = ny — (vo + Av)t

where &, n, ¢ are the relative-position components in the pursuer
body frame, along and perpendicular to the longitudinal axis. Zero
impulse is required in the longitudinal direction (Au = 0) when final
time T is selected as follows:

_&

L]

§(T)=8& —uT =90, T
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Fig. 1 Estimation errors in range are large compared to errors normal to line of sight (measurement accuracy = 0.4 mrad, EKF update rate = 100
Hz, crossing angle = 90 deg).
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Fie. 2 FErrors in zero-effort miss vector converge desnite large errors in EKF estimates of range (measurement accuracv = 0.4 mrad, EKF update
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The lateral impulses Av, Aw null the lateral offsets, predicted at
t="T:

(T) =no — (v + Av)T =0, Av = ugtanby — vo

Mo
tanfy = —
£

(T = &gy ~ (wo + Aw)T =0, Aw = ugtan gy — wy

o
tan gy = —
an ¢0 %_0

where 6y, ¢ are the initial LOS angles. When 6, ¢, are mea§ure;d
with a seeker, Av, Aw may be computed with LOS estimates 6y, ¢
andrelative-velocity estimates &, 1o, Wo. For perfect estimates, sep-
aration distance is zero at closest approach. Nonzero miss distance is
caused by errors in the estimates. For multiple impulses, estimation
errors decrease as more measurements are processed.

VII. Theoretical Limits on Accuracy

Theoretical limits on accuracy were determined with the PEGS
simulation in the Monte Carlo mode. These results represent the
best accuracy that might be achieved because of the approximations
and simplifications described earlier (refer to Secs. IV and V). For
example, measurement biases in the inertial instrumentation and
seeker were not included in this evaluation.

EKF performance depends on LOS measurement accuracy og,
EKF update rate f, and the crossing geometry. Two different
EKF update rates fi, f, were used. For most of the engagement
(0 <t <13 5), a relatively slow update rate (f; =25 Hz) is ade-
quate. Immediately before intercept (¢ > 13 s), faster update rates
f» are necessary to track the rapid changes in LOS angle. A perpen-
dicular crossing geometry was evaluated, corresponding to a 90 deg
angle between the Earth-relative velocity vectors at the nominal in-
tercept point. Accuracy results are relatively insensitive to crossing
angle,?? but the perpendicular geometry is least stressing of EKF
performance.

The performance measure is the collision probability, or the frac-
tion of Monte Carlo trials for which the separation distance at closest
approach ry;, does not exceed a specified value r:

n(r)
P =—
where n is the number of trials fulfilling the inequality, and N(=
500) is the ensemble size. Separation distances are measured
between vehicle mass centers. In the simulations, integration step
size At was reduced carefully to accurately determine 7, accord-
ing to the following scheme:

Tmin =7

- r (%
At = min{z,, %}, T=2| T = 3

Near closest approach, 7, decreases rapidly whereas 7, is relatively
constant.

Collision probabilities are useful for specifying requirements on
oy and f,. At a fixed separation distance r, p(r) increases as oy
decreases (refer to Fig. 3) oras f, increases (refer to Fig. 4). These
results demonstrate that separation distances smaller than a typical
vehicle cross section can be achieved with high probability. Thus,
the guidance and estimation algorithms are effective in achieving
successful intercepts.

VIII. Conclusions

New algorithms for optimal guidance and nonlinear estimation
are formulated for interception of a thrusting target during its boost
phase. With responsive two-axis control and accurate angle mea-
surements from a strapdown seeker, it was shown that the pursuer
can achieve very small separation distances. Consequently, these al-
gorithms will be useful for implementation in kinetic-kill vehicles,
which must collide with their targets.

_ The optimal control is proportional to the zero-effort miss, which
1s computed with perturbations arising from a variable disturbance

acceleration. Time to go is selected to null the component of com-
manded acceleration along the uncontrolled axis. This technique
shifts the aim point in a lateral direction along the target trajectory,
thereby increasing the effectiveness of two-axis control and reduc-
ing the sensitivity of miss distance to unobservable range errors.

A new contribution is a simplified, but accurate, nonlinear EKF
model that correlates the translational dynamics of the thrusting
target with its attitude motion. This feature improves trajectory plane
estimation using angle measurements. The nonlinear estimation al-
gorithm is formulated in a Cartesian-inertial frame, with nine state
variables: the components of the relative-position vector, relative-
velocity vector, and thrust acceleration vector of the target. A vector-
differential equation describes nonlinear variations in magnitude
and direction of thrust acceleration.

EKF performance is demonstrated by Monte Carlo simulations.
With frequent updates and accurate measurements of LOS angle,
excellent EKF performance is demonstrated without process noise
or adaptation. Very small miss distances may be achieved with strap-
down angle measurements, despite large estimation errors in range,
because of the time-to-go algorithm.

Appendix: EKF Model for Evader
Thrust Acceleration

In the EKE, the evader thrust acceleration vector a(¢) (subscript
e omitted for simplicity of notation) is described by a vector-
differential equation:
1
a=ae+wXa, a(t) =a(t)e (A1)
The unit vector e is parallel to the vehicle longitudinal axis, which

rotates at angular velocity w relative to inertial space. Simplified
models for ¢ and w will be derived as follows.

Magnitude of Thrust Acceleration
Thrust acceleration magnitude a(t) is specified by

T
a(t) = —

o T =-mU (A2)

where m(z) is the instantaneous mass of the vehicle. Thrust force
T is determined by mass flow rate m(<0) and exhaust velocity U.
For a constant value of U, a differential equation may be generated
by total differentiation of Eq. (A2):

a=|-——+(Z) v  @W=0
m m

Following substitution of Eq. (A2), this identity may be
expressed by
- 2
m a
1= — — A3
a=—at+— (A3)
Mass flow rate may be approximated by a first-order process that
models the lJumped dynamics of the valve, flow, and combustion
processes:

L i) = i, — 1)

—m)=—@m,—m

dr T
For small values of the motor time constant 7,, and constant com-
mands i, transient dynamics may be neglected (72 = 0) and
Eq. (A3) may be simplified:

a=— Ad
U (A4)
This equation describes the steady-state increase in the magnitude
of thrust acceleration for constant values of U and m,. Follow-
ing substitution of Eq. (A4), the unit vector ¢ may be eliminated
from (Al):
. al a
ae=—e=—a
U U
As e does not appear explicitly, it is not necessary to specify the
rotation matrix from the inertial frame to the evader body frame.
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Angular Velocity Model

During boost, a thrusting vehicle is maintained at a very small
angle of attack during a gravity-turn maneuver. The vehicle longitu-
dinal axis is parallel to the velocity relative to a rotating atmosphere:

U=v—weXr

where v is the inertial velocity vector, wg, is Earth’s angular velocity
vector, andr is the geocentric position vector. At zero angle of attack,
variations in magnitude and direction of u are described by a vector-
differential equation?:

Eu+wxu+cu&>><v=f-u—-i;‘3r (A5)
u u r
where g is Earth’s gravitational parameter. Magnitude variations
are caused (primarily) by the nongravitational acceleration f arising
from thrust minus drag. Gravitational acceleration causes u to rotate
at angular rate w relative to inertial space.
Angular velocity may be determined by taking the cross product
of Eq. (AS5)and u:

(wxu)xu:—ﬁ?(rxu)
r

where wg X v has been neglected because its magnitude is negli-
gibly small compared to gravity. As w -u = 0 because the vehicle
is stabilized in roll, expansion of the triple vector product generates
the following identity:

r=te (A6)

w=A(rxXu) P

It follows that w is parallel to the Earth-relative angular momentum
vector, and |w| depends on the gravitational acceleration as well as
the angle between r and u.

Jacobian Matrices of Partial Derivatives

Partial derivatives of the vector-differential equation (Al) are
computed for implementation in the EKF dynamics matrix. Re-
ferring to Egs. (Al), (A4), and (A6), the vectors may be resolved
into components in the inertial frame:

ap [45] ry
a= a |, w = wy |, r= r
as w3 r3

g 0

v=1| v |, wg=1[ 0

v3 Wg

Collecting terms, the three components of Eq. (A1) may be ex-
pressed by

. aa,
a, = T + waz — wiay

R aa,
a, = 7 + wia; — wa3

. aas
as = 7 + wya; — waa;

a =+/a?+a} + a?
where the angular velocity components may be expressed by
w1 = AMrauz — r3uz), wy = M(rsuy — riuz)
w3 = A(riuy — rauy)
Uy = v + wely,

Uy = V3 — wgly, Us =1v3

Using these identities, partial derivatives may be expressed as
follows:

Derivatives with respect to inertial position;

L 0 a; —ay
3(a1, &, a3) —as a 3w, wp, @3)
a(r1, 2, 13) a(ry, 12, 13)
a —a 0
dw a
—1 = Ala)x + A.(x)$r3, —w—l— = Az(l)l +Au3
6r1 87'2
dwy .
—_—= A3(D| - )\.uz
37'3
o dw
— = Awy; — Aus, 2= Aowy + Awgrs
6r1 arz
3&)2
- = Aswy + Ay
87‘3
8w3 a(‘)3
— = Mws + A(ur — wgry), — = Ayw3 — A(u; + wgra)
37‘1 8r2
ow
23— A
3!‘3

3r3
Ay =— - A
r

Derivatives with respect to inertial velocity:

... 0 a3 —a
d(ay, az, as) a a Iwy, wy, w3)
= | a3 1| =
d(vy, va, v3) d(vy, v2, v3)
a, —a 0
3(1)1 —2u1w1 30)1 —2u2w1
_—= '—2, — = ——2——— bt Ar3
dvy u v, u
30)1 —2u3w1
—_—= ——E— + )\.rz
31)3 u
80)2 —2u1w2 8w2 —2u2w2
— = ———= 4 Ars, _ = —=
31)1 u? 31)7_ u?
dw, —2usw;
— = —n
81)3 u
8w3 —2u1w3 8w3 —2u2w3
T =—— —An, o= tAn
dv; u v, u
8w3 —2u3w3
dv; u?
Derivatives with respect to inertial acceleration:
[ a®+a?  aa may 7]
—_ —w3 —— +w
al, aU, aU,
d(a1, a2, a3) aa; a’+a?  aas
Py ‘w3 —
a(aly as, a3) aUe aUe aUe
aas aras a* + a?
— s wy
L aU, al, alU, |
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